START

FIRST QUARTER 1992 QUARTERLY GROUND-WATER MONITORING REPORT SIEMENS NUCLEAR POWER CORPORATION RICHLAND, WASHINGTON

PROJECT NO. WA183.03

Volume 1

June 8, 1992

Prepared for

Siemens Nuclear Power Corporation 2101 Horn Rapids Road Richland, Washington 99352

Prepared by

Geraghty & Miller, Inc. 8330 154th Avenue Northeast Redmond, Washington 98052-3864 (206) 869-6321

Ground Water

Engineering

Hydrocarbon

Remediation

Education

June 9, 1992

Mr. Robert Stewart
Unit Manager
U.S. Department of Energy
Post Office Box 550, A6-95
Richland, Washington 99352

RE: First Quarter 1992 Quarterly Ground-Water Monitoring Report Siemens Nuclear Power Corporation, Richland, Washington

Dear Bob:

Enclosed are 2 copies of the above-referenced report, prepared by Geraghty & Miller, Inc. for Siemens Nuclear Power Corporation (SNP).

Please call if you have any questions regarding the contents of this report.

Sincerely,

GERAGHTY & MILLER, INC.

Jay P. Bower

Project Engineer/Project Manager

Susan J. Keith

Principal Scientist and Associate/

Project Officer

Suran Kecker

JPB/kkj

cc: Dave Einan, U.S. Environmental Protection Agency (4)

John Stewart, U.S. Army Corps of Engineers (5)

I:\SNPC\WA18303\10TRGWMN.92L

FIRST QUARTER 1992 **OUARTERLY GROUND-WATER MONITORING REPORT** SIEMENS NUCLEAR POWER CORPORATION RICHLAND, WASHINGTON

June 8, 1992

Geraghty & Miller, Inc. is submitting this report to Siemens Nuclear Power Corporation for work performed at their Richland, Washington facility. The report was prepared in conformance with Geraghty & Miller's strict quality assurance/quality control procedures to ensure that the report meets the highest standards in terms of the methods used and the information presented. If you have any questions or comments concerning this report, please contact one of the individuals listed below.

8

Respectfully submitted,

GERAGHTY & MILLER, INC.

haurie 10. Benton

Laurie D. Benton Scientist II

Jay P. Bower

Project Engineer II/Project Manager

Susan J. Keith

Principal Scientist and Associate/

Project Officer

CONTENTS

<u>rage</u>
INTRODUCTION
METHODS 1
RESULTS 4
WATER LEVEL MEASUREMENTS 4
LABORATORY ANALYSES 4
Organic Analytes
Trichloroethene and 1,1,1-Trichloroethane
Other Organic Analytes
Inorganic Analytes
Nitrate and Ammonia 6
Fluoride 6
Radionuclides 6
DATA VALIDATION
Organic Analyses
Acetone 7
Methylene chloride
Other Organic Analytes 8
Inorganic Analyses
Ortho-Phosphate
Metals 8
Wictais 0
REFERENCES 10

TABLES

- 1. Monitoring Well Construction Summary
- 2. Water-Level Elevations
 - a. Siemens Nuclear Power Corporation Wells
 - b. U.S. Department of Energy 1100-EM-1 Unit Wells
- 3. Summary of Analytes, Methods, and Data Quality Objectives
- 4. Analytical Results for March 1992 Ground-Water Samples
 - a. Volatile Organic Analytes
 - b. Dissolved Metals

0

- c. Anions and Ammonia
- d. Additional Inorganic Analytes and Radionuclides
- e. Field Parameters
- 5. Summary of Data Validation Results

FIGURES

- 1. Site Location Map
- 2. Monitoring Well Locations
- 3. Water Table Surface Map
- 4. TCE and TCA Concentrations in the Ground Water, March 1992
- 5. Nitrate and Ammonia Concentrations in the Ground Water, March 1992
- 6. Fluoride Concentrations in the Ground Water, March 1992
- 7. Radionuclide Concentrations in the Ground Water, March 1992

APPENDICES

- A. Water Sampling Logs
- B. Laboratory Reports for March 1992 Ground-Water Samples
- C. Data Validation Report

~

Ç.,

***** 1

FIRST QUARTER 1992 QUARTERLY GROUND-WATER MONITORING REPORT SIEMENS NUCLEAR POWER CORPORATION RICHLAND, WASHINGTON

INTRODUCTION

This report documents the first quarter 1992 ground-water sampling effort conducted in accordance with the Phase I Ground-Water Study Work Plan (Work Plan) (Geraghty & Miller 1991a) for the Siemens Nuclear Power Corporation (SNP) fuels fabrication facility in Richland, Washington (Figure 1). The first quarter 1992 sampling effort was conducted in March 1992 and is the second quarterly sampling event for the Phase I Ground-Water Study. Ground-water samples were collected from SNP Wells GM-1 through GM-12 and TW-14 and U.S. Department of Energy (DOE) Well MW-12.

In March and early April, 1992, SNP Wells GM-13 through GM-16 and P-1 through P-3 were installed. These new wells are shown on the figures in this report. These wells were sampled in April and during the second quarter 1992 sample event in May 1992. The results from the April samples will be presented with results from the second quarter ground-water sampling effort.

The following discusses the first quarter 1992 methodology and results.

METHODS

Water-level measurements and ground-water quality samples were collected from SNP Wells GM-1 through GM-12 and TW-14 (Figure 2) between March 9 and 12, 1992 by Geraghty & Miller personnel. Sets of duplicate ground-water samples were collected from DOE Well MW-12 and SNP Well GM-8 in the presence of DOE sampling personnel. The ground-water sampling methodology employed was that outlined in the Phase I Ground-Water Study Sampling and Analysis Plan (SAP) (Geraghty & Miller 1991b). Analytical data were validated in accordance with the Quality Assurance Project

Plan (Geraghty & Miller 1991b), the U.S. Environmental Protection Agency (USEPA) Laboratory Data Validation Functional Guidelines for Evaluating Organic Analyses (USEPA 1988a), and the USEPA Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses (USEPA 1988b), as applicable.

Water-levels in the wells were measured on March 9, 1992 within a 24-hour period prior to sampling activities (Figure 3). Monitoring well and test well construction and survey data for the SNP and DOE wells of interest are provided in Table 1 and water-level data are provided in Table 2. The static water level in each SNP well was measured with an electric sounder (Slope Indicator Company water level indicator, model 51453). In addition, the total depth of the well was measured using a weighted stainless-steel tape. The measuring point was a notch in or the top of the well casing for which the elevation has been surveyed relative to mean sea level (msl). All water-level and total depth measurements were made by Geraghty & Miller personnel.

From the water-level and total depth measurements, the volume of water in the well was calculated. Then, a minimum of three well volumes of water were evacuated from the well using a nondedicated submersible pump. The pH, specific conductance, and temperature of the discharged water were measured during the purging after each well volume was removed. The pH was considered stable when two consecutive measurements agreed within 0.2 standard units. Temperature was considered stable when two consecutive measurements agreed within 0.2 degrees centigrade. Specific conductance readings were considered stable when two consecutive readings were within 10 percent of each other. If the pH, specific conductance, and temperature did not stabilize within the designated purging volume, then purging continued until the readings stabilized or until the field supervisor indicated that further purging was unnecessary. Purge water was pumped into 55-gallon drums and were held on site, except for the purge water from SNP Wells GM-1 and GM-2 which was deemed uncontaminated based on the fourth quarter 1991 ground-water quality sample results and was discharged to the ground.

Immediately after collection, all samples were recorded on chain-of-custody forms and stored in a cooler with wet ice and frozen reusable ice packs. Coolers of filled sample containers were either relinquished to an overnight-delivery courier for delivery or delivered the next day by sampling personnel to the laboratory for analysis. Appropriate chain-of-custody procedures were followed each time samples were relinquished to either the courier or the laboratory.

Field parameters (pH, specific conductance, and temperature) were measured and recorded on the Water Sampling Logs. The color, odor, appearance, and other observations about the sample were also noted on the Water Sampling Log. Water Sampling Logs are provided in Appendix A.

All nondedicated sampling equipment was decontaminated according to the SAP (Geraghty & Miller 1991b) prior to use and after sampling each well to avoid chemical cross-contamination of ground-water samples.

For the 14 wells sampled, one duplicate was collected for the whole sampling event and one rinsate sample was collected at the end of each sampling day. The deionized water used for the rinsate samples was obtained from the SNP Deionized Water Building. In addition, two trip blanks were analyzed for the sampling event.

Pacific Northwest Environmental Laboratory, Inc. of Redmond, Washington, was contracted to analyze the ground-water samples. The samples were analyzed for the constituents listed in Table 3, with the exception of temperature, specific conductance, and pH, which were analyzed in the field by sampling personnel.

After the data were validated according to the methods cited above, the areal distributions of constituent concentrations were plotted on site maps. These maps are described in the following section.

RESULTS

WATER LEVEL MEASUREMENTS

n

Figure 3 shows the March 1992 water-level elevations and general water-table surface contours. Ground-water flow was generally to the northeast. The horizontal gradient ranged from approximately 0.003 to 0.0003.

LABORATORY ANALYSES

Analytes, analytical methods, and data quality objectives are listed in Table 3. Laboratory analytical results for organic and inorganic analytes are listed in Table 4 and selected constituents are discussed below. The laboratory reports are provided in Appendix B.

S

(·

Trichloroethene and 1,1,1-Trichloroethane

The distributions of trichloroethene (TCE) and 1,1,1-trichloroethane (TCA) based on analytical results from the March 1992 sampling are shown in Figure 4. TCE was detected in ground-water samples from all the wells, except SNP Well GM-4 and upgradient SNP Wells GM-1 and GM-2. The highest concentration of TCE in a sample from an SNP well was 29 micrograms per liter (μ g/L) in the sample from SNP Well GM-12, located near the South Pit. The South Pit area is part of the Horn Rapids Landfill located northeast of the SNP facility on the south side of Horn Rapids Road. TCE concentrations in samples from SNP Wells GM-3, GM-5 through GM-11, and TW-14 ranged from 9 μ g/L to 22 μ g/L. TCA concentrations ranged from nondetectable to 4 μ g/L. TCA was not detected in samples from SNP Wells GM-7, GM-8, GM-10, GM-11, GM-12, or from upgradient SNP Wells GM-1 and GM-2. The sample from DOE Well MW-12 had a TCE concentration of 70 μ g/L and a TCA concentration of 2 μ g/L.

Other Organic Analytes

Acetone was detected in the samples from SNP Wells GM-2, GM-7, and GM-8 and DOE Well MW-12 at concentrations ranging from 6 μ g/L to 31 μ g/L and chloroform was detected in the sample from SNP Well GM-4 at a concentration of 3 μ g/L. Toluene was detected in samples from SNP Wells GM-6 and GM-7 at 1 μ g/L. Benzene and xylene (total) were detected in the sample from SNP Well GM-6 at concentrations of 1 μ g/L. Methylene chloride was detected in samples from SNP Wells GM-1 through GM-3, GM-5 through GM-9, and GM-11 and DOE Well MW-12 at concentrations ranging from 1 μ g/L to 2 μ g/L. 1,1,2,2-tetrachloroethane was not detected in any of the ground-water samples this quarter.

Inorganic Analytes

Nitrate and Ammonia

The distributions of nitrate and ammonia based on March 1992 analytical results are shown in Figure 5. Nitrate concentrations ranged from 5.07 milligrams per liter (mg/L) to 45.9 mg/L (expressed as nitrogen, NO₃-N) in SNP Wells GM-3 through GM-12 and TW-14. Samples from upgradient SNP Wells GM-1 and GM-2 contained 4.45 mg/L and 6.52 mg/L, respectively. Ammonia concentrations based on the March 1992 sampling ranged from not detected above the detection limit of 0.050 mg/L to 41.2 mg/L (expressed as nitrogen, NH₃-N) in SNP Wells GM-3 through GM-12 and TW-14. Ammonia was not detected in samples from upgradient SNP Wells GM-1 and GM-2. The sample from DOE Well MW-12 had a nitrate concentration of 46.2 mg/L; ammonia was not detected.

Fluoride

....

9

The distribution of fluoride based on March 1992 analytical results is shown in Figure 6. Fluoride concentrations ranged from 0.198 mg/L to 10.2 mg/L in SNP Wells GM-3 through GM-12 and TW-14. Samples from upgradient SNP Wells GM-1 and GM-2 contained 0.253 mg/L and 0.250 mg/L, respectively. The sample from DOE Well MW-12 had a fluoride concentration of 0.348 mg/L.

Radionuclides

The distributions of gross-alpha and gross-beta concentrations based on the March 1992 analytical results are shown in Figure 7. Gross alpha concentrations ranged from 1.9 \pm 3.7 picocuries per liter (pCi/L) to 78 \pm 9 pCi/L in SNP Wells GM-3 through GM-12 and TW-14. Samples from upgradient SNP Wells GM-1 and GM-2 contained 2.9 \pm 3.1 pCi/L and 1.6 \pm 2.2 pCi/L, respectively. Gross beta concentrations ranged

from 12 \pm 2 pCi/L to 87 \pm 4 pCi/L in SNP Wells GM-3 through GM-12 and TW-14. Samples from upgradient SNP Wells GM-1 and GM-2 contained 12 \pm 3 pCi/L and 5.5 \pm 2.0 pCi/L, respectively. The sample from DOE Well MW-12 had a gross alpha concentrations of 6.8 \pm 5.6 pCi/L and a gross beta concentration of 80 \pm 7 pCi/L.

DATA VALIDATION

The data validation report is provided in Appendix C and the results of data validation are listed in Table 5. The following section discusses the data validation for specific analytes.

Organic Analyses

Acetone

 ∞

9

Acetone was detected in both of the trip blanks and one of the equipment blanks. Sample results above the Instrument Detection Limit (IDL) associated with these blanks were flagged with a "U" because they are less than 10 times the amount detected in the associated blank (USEPA 1988a). Acetone is a common laboratory contaminant (USEPA 1988a) and may have been introduced into the samples at the laboratory.

Methylene chloride

Methylene chloride was detected in one of the trip blanks, one of the laboratory method blanks, and all of the equipment blanks (rinsates). Sample results above the IDL associated with these blanks were flagged with a "U" because they are less than ten times the amount detected in the associated blank (USEPA 1988a). Methylene chloride is a common laboratory contaminant (USEPA 1988a) and may have been introduced into the samples at the laboratory.

Other Organic Analytes

Chloroform was detected in all four equipment blanks. Only the sample result from SNP Well GM-4 was above the IDL. Since that result is less than five times the concentration of chloroform in the blank, it is qualified with a "U" (USEPA 1988b).

Inorganic Analyses

Ortho-Phosphate

One of the laboratory duplicates for ortho-phosphate has a relative percent difference outside of quality control limits. Hence, the associated samples are flagged as estimated with a "J" (USEPA 1988b).

Metals

3

Iron was detected in one of the equipment blanks. Only two associated results, those of the samples from SNP Well GM-2 and DOE Well MW-12 are above the IDL. Since these results are less than five times the concentration of iron in the blank, they are flagged with a "U" (USEPA 1988b).

Calcium, iron, magnesium, potassium, and sodium were detected in one or more of the laboratory preparation blanks. Associated samples that have results above the IDL, but are less than five times the concentration in the blank are flagged with a "U" (USEPA 1988b).

Barium, calcium, iron, magnesium, manganese, and sodium were detected in a number of samples at concentrations above the IDL, but below the Contract Required Detection Limit (CRDL). Hence, these results are flagged with a "B".

Field Parameters

(".")

All specific conductance data for this sampling event are flagged as estimated because the sampling personnel were unable to perform a two-point calibration for the conductivity meter.

REFERENCES

Geraghty & Miller, Inc. 1991a. Work Plan, Phase I Ground-Water Study, Siemens Nuclear Power Corporation, Richland, Washington, September 1991.
1991b. Sampling and Analysis Plan, Phase I Ground-Water Study, Siemens Nuclear Power Corporation, Richland, Washington, September 1991.
U.S. Environmental Protection Agency. 1988a. Laboratory Data Validation Functional Guidelines for Organic Analyses, February 1988.
1988b. Laboratory Data Validation Functional Guidelines for Inorganic Analyses, July 1988.

TABLES

C

4.

TABLE 1a. MONITORING WELL CONSTRUCTION SUMMARY
SIEMENS NUCLEAR POWER CORPORATION, RICHLAND, WASHINGTON
PROJECT NO. WA183.03/06

Well ID	Wall Diameter (in)	Date Installed	Screened Interval (ft bis)	Boring Depth (ft bls)	Measuring Point Elevation (tt mls)	Concrete Pad Elevation (ft mls)	North Coordinate (ft) *	East Coordinate (ft) *	Well Type	
PW-1	6	14-Apr-92	11.6 - 26.9	30.1	367. 9 6	365.60	372,875	2,303,300	Stainless steel screen and steel rise	
P-1	2	31-Mar-92	43.0 - 58.0	76.5	417.88	416.21	370,930	2,299,692	Stainless steel screen/PVC riser	
P-2	2	02-Apr-92	8.2 - 23.2	24.0	367.67	366.21	373,423	2,302,087	Stainless steel screen/PVC riser	
P-3	2	27-Mar-92	62.8 - 72.8	73.5	369.91	368.63	371,733	2,302,440	Stainless steel screen/PVC riser	
GM-1	2	16-Oct-91	14.8 - 34.8	35.0	375.44	374.04	371,320	2,303,233	Stainless steel screen/PVC riser	
GM-2	2	15-Oct-91	7.3 - 27.3	28.5	370.09	368.49	371,746	2,302,437	Stainless steel screen/PVC riser	
3M-3	2	24-Oct-91	10.8 - 30.8	33.0	370.85	371.16	372,300	2,302,894	Stainless steel screen/PVC riser	
GM-4	2	23-Oct-91	8.3 - 28.3	28.5	369.66	368.36	372,753	2,303,001	Stainless steel screen/PVC riser	
GM-5	2	23-Oct-91	4.8 - 24.8	25.0	367.41	365.80	372,865	2,303,321	Stainless steel screen/PVC riser	
GM-6	2	23-Oct-91	20.0 - 40.0	40.2	380.87	379.47	372,776	2,303,864	Stainless steel screen/PVC riser	
GM-7	2	22-Oct-91	20.4 - 40.4	40.6	380.89	379.61	373,030	2,303,807	Stainless steel screen/PVC riser	
GM-8	2	21-Oct-91	12.8 - 32.8	33.0	372.48	370.92	373,145	2,303,534	Stainless steel screen/PVC riser	
3M-9	2	18-Oct-91	8.9 - 28.9	30.0	371.04	371.04	373,432	2,303,337	Stainless steel screen/PVC riser	
GM-10	2	18-Oct-91	13.8 - 33.8	35.0	376.33	374.82	373,435	2,303,651	Stainless steel screen/PVC riser	
GM-11	2	17-Oct-91	27.8 - 47.8	48.0	381.84	380.19	373,454	2,303,942	Stainless steel screen/PVC riser	
GM-12	2	17-Oct-91	29.0 - 49.0	49.2	388.78	387.23	373,442	2,304,243	Stainless steel screen/PVC riser	
GM-13	2	24-Mar-92	22.2 - 42.2	50.0	384.14	382.67	372,591	2,304,151	Stainless steel screen/PVC riser	
3M-14	2	03-Apr-92	8.6 - 28.6	29.3	371.81	372.24	371,995	2,302,764	Stainless steel screen/PVC riser	
GM-15	2	06-Apr-92	9.1 - 29.6	30.0	365.51	369.35	372,388	2,303,039	Stainless steel screen/PVC riser	
GM-16	2	30-Mar-92	15.0 - 35.0	42.0	375.43	374.31	372,866	2,303,593	Stainless steel screen/PVC riser	

^{*} North American Datum 1927 (NAD 27)

ft Feet

ft msl Feet above mean sea level

ft bls Feet below land surface

in Inches

NA Not available/Not applicable

ESNPC/WA18303/WELLCON WQ2

93127011704

TABLE 1b. MONITORING WELL CONSTRUCTION SUMMARY
SIEMENS NUCLEAR POWER CORPORATION, RICHLAND, WASHINGTON
PROJECT NO. WA183.03/06

Well ID	Weli Diameter (in)	Date Installed	Screened Interval (ft bis)	Boring Depth (ft bls)	Measuring Point Elevation (ft mls)	Ground Elevation (ft mls)	North Coordinate (ft)*	East Coordinate (ft)*	Well Type
TW-1	6	1973	NA	NA	367.00	366.2	372,769	2,303,158	Steel screen and riser
TW-2	6	1973	NA	NA	370.00	368.5	372,769	2,303,443	Steel screen and riser
TW-3	6	1973	NA	NA	369.52	366.7	372,527	2,303,443	Steel screen and riser
TW-4	6	1973	NA	NA	371.04	369.6	372,385	2,303,443	Steel screen and riser
TW-5	6	1974	NA	NA	371,13	368.1	372,255	2,303,443	Steel screen and riser
TW-6	6	1974	NA	NA	366.15	363.7	372,141	2,303,443	Steel screen and riser
TW-7	6	1974	NA	NA	367.15	364.5	371,967	2,303,443	Steel screen and riser
TW-8	6	1974	NA	NA	372.44	371.8	372,623	2,302,676	Steel screen and riser
TW-9	6	Dec-77	NA	. NA	367.84	365.8	372,951	2,303,284	Steel screen and riser
TW-11	6	Jan-78	NA	NA	373.12	371.4	371,981	2,303,182	Steel screen and riser
TW-12	6	1979	NA	NA	374.15	371.7	371,986	2,303,307	Steel screen and riser
TW-13	6	1979	NA	NA	375.07	372.5	371,714	2,303,307	Steel screen and riser
TW-14	6	1980	NA .	NA	370.25	368.4	373,448	2,303,389	Steel screen and riser
TW-15	6	1980	AM	NA	370.65	369.0	373,444	2,303,529	Steel screen and riser
TW-16	6	NP	NA	NA	376.77	375.2	373,447	2,303,693	Steel screen and riser
TW-17	6.	1982	NA	NA	379.36	377.4	373,309	2,303,809	PVC screen and riser
TW-18	6	1982	NA	NA	377.27	375.4	373,431	2,303,679	PVC screen and riser
TW-19	6	Apr-90	NA	NA	381.15	378.2	372,774	2,303,767	Steel screen and riser
TW-20	6	Apr-90	NA	NA	381.43	378.5	372,581	2,303,767	Steel screen and riser
TW-21	6	Apr-90	NA	NA	380.47	377.5	372,372	2,303,768	Steel screen and riser
TW-22	6	Apr-90	NA	NA	374.95	371.6	371,586	2,303,410	Steel screen and riser
TW-23	6	Apr-90	NA	25.2	373.25	371.4	371,556	2,302,499	Steel screen and riser
TW-24	6	Apr-90	NA	23.2	373.36	370.1	372,117	2,302,282	Steel screen and riser
TW-25	6	Apr-90	NA	NA	371.92	368.5	372,619	2,302,040	Steel screen and riser
TW-26	6	Apr-90	NA	NA	367.70	365.4	372,894	2,303,257	Steel screen and riser

North American Datum 1927 (NAD 27)

ft Feet

ft msl Feet above mean sea level ft bis Feet below land surface

in Inches

NA Not available/Not applicable

¹ ISNPCIWATESOS/WELLCON WQ2

TABLE 1c. MONITORING WELL CONSTRUCTION SUMMARY

SIEMENS NUCLEAR POWER CORPORATION, RICHLAND, WASHINGTON PROJECT NO. WA183.03/06

Well ID	Well Diameter (in)	Date Installed	Screened Interval (ft bls)	Boring Depth (ft bls)	Measuring Point Elevation (ft mls)	Concrete Pad Elevation (ft mls)	North Coordinate (ft)*	East Coordinate (ft) *	Well Type
MW-2	4	02-Feb-90	21.3 - 41.7	51.0	382.38	379.36	370,933	2,305,244	Stainless steel screen and riser
MW-8	4	15-Dec-89	13.6 - 34.2	34.7	374. 7 5	371.62	373,851	2,302,957	Stainless steel screen and riser
MW-9	4	03-Feb-90	69.3 - 79.3	81.4	375.78	371.86	373,815	2,302,996	Stainless steel channel pak and riser
MW-10	4	17-Nov-89	36.3 - 56.3	67.5	392.29	389.09	375,315	2,304,958	Stainless steel screen and riser
MW-11	4	27-Dec-89	34.3 - 54.7	58.5	392.07	388.69	375,003	2,304,984	Stainless steel channel pak and riser
MW-12	4	17-Jan-90	26.5 - 46.9	59.2	384.57	381.14	374,775	2,305,294	Stainless steel channel pak and riser
MW-13	4	12-Jan-90	26.2 - 41.5	44.0	383.71	379,85	374,559	2,305,279	Stainless steel channel pak and riser
MW-14	4	07-Jan-90	43.5 - 53.5	60.5	382.91	380.01	374,577	2,305,303	Stainless steel channel pak and riser
MW-15	4	07-Dec-90	20.0 - 40.3	54.0	380.58	377.43	374,285	2,305,304	Stainless steel screen and riser
MW-19	4	26-Jun-91	29.9 - 50.9	54.0	386.90	384.56	373,166	2,305,947	Stainless steel screen and riser
MW-20	. 4	18-Jun-91	24.1 - 45.1	67.7	385.68	383.45	376,009	2,305,988	Stainless steel screen and riser
MW-21	4	09-Jul-91	88.5 - 98.5	98.5	383.41	379.45	374,536	2,305,300	Stainless steel screen and riser
MW-22	4	12-Jun-91	30.3 - 50.3	63.0	387.50	385.07	374,585	2,306,806	Stainless steel screen and riser

North American Datum 1927 (NAD 27)

ft Feet

ft msl Feet above mean sea level ft bis Feet below land surface

in Inches

NA Not available/Not applicable

¹ SNPC WATESOS WELLCON WOS

TABLE 2a. WATER-LEVEL ELEVATIONS OF SIEMENS NUCLEAR POWER CORPORATION WELLS SIEMENS NUCLEAR POWER CORPORATION, RICHLAND, WASHINGTON PROJECT NO. WA183.03

D-11	Water-Level Elevations (ft msl)												
Date of Measurement	19-Jul-90	11-Sep-90	18-Jul-91	11/12-Nov-91	16-Dec-91	13-Jan-92	12-Feb-92	9-Mar-92					
Well Number													
GM-1	NA	NA	NA	355.49	355.34	355.20	355.00	354.83					
GM-2	NA	NA	NA	355.45	355.35	355.24	355.08	354.93					
GM-3	NA	NA	NA	355.30	355.19	355.08	354.94	354.79					
GM-4	NA	NA	NA	355.05	354.97	354.88	354.73	354.59					
GM-5	NA	NA	NA	354.84	354.89	354.80	354.65	354.51					
GM-6	NA	NA	NA	354.92	354.92	354.82	354.66	354.52					
GM-7	NA	NA	NA	354.74	354.78	354.69	354.55	354.42					
GM-8	NA	NA	NA	354.67	354.73	354.64	354.50	354.38					
GM-9	NA	NA	NA	354.66	354.61	354.54	354.42	354.30					
GM-10	NA	NA	NA	354.64	354.57	354.49	354.37	354.25					
GM-11	NA	NA	NA	354.28	354.34	354.27	354.14	354.02					
GM-12	NA	NA	NA	353.97	354.01	353.92	353.78	353.68					
GM-13	NA	NA	NA	NA	NA	NA	NA	NA					
GM-14	NA	NA	NA	NA	NA	NA	NA	NA					
GM-15	NA	NA	NA	NA	NA	NA	NA	NA					
GM-16	NA	NA	NA	NA	NA	NA	NA	NA					
P-1	NA	NA	NA	NA	NA	NA	NA	NA					
P-2	NA	NA	NA	NA	NA	NA	NA	NA					
P-3	NA	NA	NA	NA	NA	NA	NA	NA					
PW-1	NA	NA	NA	NA	NA	NA	NA	NA					
TW-1	353.50	354.08	354.2	355.00	355.02	354.94	354.78	354.65					
TW-2	353.52	354.04	354.2	355.00	355.02	354.92	3 54.77	354.63					
TW-3	353.55	354.12	354.31	355.22	355.11	355.01	354.85	354.70					
TW-4	353.56	354,19	354.33	355.13	355.15	355.04	3 54.87	354.72					
TW-5	353.59	354.19	354.35	355.16	355.17	355.07	354.89	354.74					
TW-6	353.62	354.23	354.44	355.21	355.22	355.11	354.93	3 54.77					
TW-7	353.57	354.28	354.46	355.40	355.27	355.14	354.98	354.79					
TW-8	NA	NA	354.36	355.13	355.17	355.08	354.93	354.79					
TW-9	353.53	354.03	354.15	354.92	354.97	354.90	354.74	354.60					
TW-11	353.58	354.29	-354.43	355.24	355.26	355.1 5	354.96	354.80					
TW-12	353.65	354.30	354.47	3 55.27	355.27	355.15	3 54.97	354.81					
TW-13	353.62	354.36	354.57	355.29	355.35	355.21	355.03	354.83					
TW-14	353.14	353.79	353.78	354.65	354.59	354.54	354.40	354.28					
TW-15	353.15	354.67	353.75	354.52	354.59	354.51	3 54.38	354.27					
TW-16	353.29	354.85	353.95	354.72	354.77	354.71	354.58	353.76					
TW-17	NA	NA	355.84	354.68	354.74	354.67	3 54.54	354.27					
TW-18	NA	NA	351.66	354.55	354.60	354.54	354.41	354.25					
TW-19	353.42	354.11	354.24	355.03	355.06	354.96	354.81	354.66					
TW-20	353.53	354.12	354.32	355.10	355.11	355.03	354.86	354.71					
TW-21	353.57	354.20	354.37	355.23	355.22	355.11	354.93	354.73					
TW-22	353.63	354.31	354.46	355.25	355.24	355.10	354,91	354.73					
TW-23	353.75	354.38	354.56	355.48	355.41	355.29	355.13	354.98					
TW-24	353.71	3 54. 32	354.48	355.36	355.31	355.21	355.05	354.90					
TW-25	353.88	354.38	354.6	355.30	355,38	355.29	355.16	355.02					
TW-26	353.53	354.05	354.19	354.96	354.99	354.91	354.77	354.63					

ft msi

C...

Feet relative to mean sea level

btopc

Below top of casing

NA

Not available/not applicable

TABLE 2b. WATER-LEVEL ELEVATIONS OF U.S. DEPARTMENT OF ENERGY 1100-EM-1 UNIT WELLS HANFORD RESERVATION, RICHLAND, WASHINGTON PROJECT NO. WA183.03

Date of					Water-Level	Elevations (ft	msi)		
Date of Measurement		27-Jul-90	24-Sep-90	26-Jul-91	25-Nov-91	16-Dec-91	13-Jan-92	13-Feb-92	10/11/12-Mar-92
Well Number									
699-S34-E10	MW-2	352.84	353.36	354.18	353.62	354.43	353.72	353.18	352.94
699-S31-E08	8-WM	353.03	353.30	353.59	354.31	354.39	354.30	354.17	NA
699-S32-E08	MW-9	358.92	359.07	359.36	360.06	360.09	360.35	359.99	NA
699-S30-E10	MW-10	348.98	348.87	349.14	349.66	349.73	349.40	349.15	348,97
699-\$30-E10	MW-11	349.39	349.37	349.58	356.88	350.15	349.92	349.73	349.56
699-S31-E10	MW-12	348.71	348.50	348.90	341.81	349.33	348.96	348.66	348.44
699-S31-E10	MW-13	349.24	349.17	349.45	350.08	350.02	349.72	349.43	NA
699-S31-E10	MW-14	349.16	349.08	349.38	349.99	349.87	349.64	349.42	349.72
699-S31-E10	MW-15	349.05	348.97	349.30	349.92	349.87	349.49	349.19	348.99
699-S32-E11	MW-19	NA	NA	NA	NA	351.08	350.69	350.69	349.78
699-S29-E11	MW-20	NA	NA	NA	NA	347.35	347.00	347.00	NA.
699-S31-E10	MW-21	NA	NA	NA	NA	349.42	349.14	349.14	NA
699-S31-E11	MW-22	NA	NA	NA	NA	347.17	346.58	346.58	NA

ft msl Feet relative to mean sea level btopc Below top of casing NA Not available/not applicable

I:\SNPC\WA18303\WATLEVS\1STQTBWL.WQ1

TABLE 3. SUMMARY OF ANALYTES, METHODS, AND DATA QUALITY OBJECTIVES FOR GROUND-WATER MONITORING SIEMENS NUCLEAR POWER CORPORATION FACILITY, RICHLAND, WASHINGTON PROJECT NO. WA183.03

Analyte	Method	CROL (1)		G&M QA Level (2)	Precision Criteria (3)	Accuracy Criteria (3)
Volatile Organics	624-CLP-M (4)	2	ug/L	IV	25	75-125
Ammonia as Nitrogen	350.3 (5)	50	ug/L	18	20	75-125
Barium	200.7 (5)	200	ug/L	IV	20	75-125
Calcium	200.7 (6)	5000	ug/L	IV.	20	75-125
Iron	200.7 (6)	100	ug/L	IV	20	75-125
Magnesium	200.7 (6)	5000	ug/L	1V	20	75-125
Manganese	200.7 (6)	15	ug/L	IV.	20	75-125
Potassium	200.7 (6)	5000	ug/L	IV	20	75-125
Sodium	200.7 (6)	5000	ug/L	IV	20	75-125
Chloride	300.0 (7)	10000	ug/L	111	20	75-125
Fluoride	340.2 (8)	100	ug/L	115	20	75-125
Nitrate as Nitrogen	300.0 (7)	100	ug/L	111	20	75-125
Phosphate	300.0 (7)	500	ug/L	IR	20	75-125
Sulfate	300.0 (7)	2000	ug/L	IN	20	75-125
Alkalinity	310.1 (5)	10000	ug/L	113	20	75-125
Acidity	305.1 (5)	10000	ug/L	1112	20	75-125
Gross alpha	900.0 (9)	7.5	pCi/L	Ш	20	75-125
Gross beta	900.0 (9)	25	pÇi/L	10	20	75-125
Total Dissolved Solids	160.1 (8)	10	mg/L	Ш	20	75-125
Temperature	(10)	NA		NA	NA	NA
pΗ	(10)	NA		NA	NA	NA
Specific conductance	(10)	NA		NA	NA	NA

- (1) CRQL is the contract-required quantitation limit; values are to be considered requirements in the absence of known or suspected analytical interferences.
- (2) Level IV reporting includes a full laboratory report as required by the USEPA Contract
 Laboratory Program (CLP). Level III reporting includes a full CLP data package except
 for raw spectra and laboratory bench data sheets used to prepare quality assurance documents.
- (3) Precision is expressed as a relative percent difference between results of duplicate or replicate analyses; accuracy is expressed as percent recovery of an analyte. These limits apply to sample results greater than five times the CRQL and are to be considered requirements in the absence of known or suspected analytical interferences.
- (4) Method described in 40 CFR 136, Appendix A.
- (5) Method described in Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, 1979.
- (6) Method described in 40 CFR 136, Appendix C.
- (7) Method described in Determination of Irrorganic Anions in Aqueous and Solid Samples of Ion Chromatography, EPA-600/4-84-017, 1984.
- (8) Method described in Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, 1979, Revised 1983.
- (9) Method described in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, 1980.
- (10) Measured in the field according to instrument manufacturer's instructions.

ug/L Micrograms per liter pCi/L Picocuries per liter NA Not applicable

I:\SNPC\WA18303\DATAVAL\DQQ.WQ1

VOLATILE ORGANIC ANALYTES TABLE 4a. ANALYTICAL RESULTS FOR GROUND-WATER SAMPLES ID, WASHINGTON

SIEMENS NUCLEAR POWER CORPORATION FACILITY, BIGHLAND
PROJECT NO. WA183.03

Well Number	Date Sampled	TCE (ug/L)	TCA (ug/L)	Acetone (ug/L)	Chloroform (ug/L)	Toluene (ug/L)	Methylene Chloride (ug/L)	Benzena (ug/L)	Xylene (total) (ug/L)	1,1,2,2- Tetrachloroethane (ug/L)
GM-1	11-12-91	1 U	1 U .	2 U	1 U	1 U	1 U	1 U	1 U	1 U
	03-09-92	1 U	1 U	17 U	1 V	1 U	2 U	1 U	1 U	1 U
GM-2	11-12-91	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 ប	1 U
	03-10-92	1 U	1 U	6 U	1 U	1 U	2 U	1 U	1 ប	1 U
GM-3	11-12-91	22 B	5	2 U	1 U	1 U	1 U	1 U	1 U	1 U
	03-12-92	15	4	2 U	1 U	1 U	1 U	1 U	1 U	1 U
GM-4	11-12-91	2 U	3	2 U	2 U	1 U	1 U	1 U	1 ប	5
	03-12-92	1 U	2	2 U	3 U	1 U	1 U	1 U	1 ប	1 U
GM-5	11-13-91	22 B	2	3 U	1 U	1 U	1 U	1 U	1 U	1 U
	11-13-91*	21 B	2	2 U	1 U	1 U	1 U	1 U	1 U	1 U
	03-12-92	14	1	2 U	1 U	1 U	2 U	1 U	1 U	1 U
	03-12-92*	12	1	2 U	1 U	1 U	1 U	1 U	1 U	1 U
GM-6	11-13-91	12 B	3	2 U	1 V	1 U	1 U	1 U	1 U	1 U
	03-10-92	18	1	2 U	1 V	1	2 U	1	1	1 U
GM-7	11-13-91	13 B	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U
	03-11-92	15	1 U	31 U	1 U	1	2 U	1 U	1 U	1 U
GM-8	11-13-91	13 B	1 U	2 U	! U	1 U	1 U	1 U	1 U	1 U
	03-11-92	22	1 U	7 U	! U	1 U	2 U	1 U	1 U	1 U
GM-9	11-13-91	10 B	3	2 U	1 U	1 U	1 U	1 U	1 U	1 U
	03-11-92	.9	2	2 U	1 U	1 U	1 U	1 U	1 U	1 U
GM-10	11-13-91	21 B	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U
	93-11-92	18	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U
GM-11	11-13-91	23 B	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U
	03-11-92	17	1 U	2 U	1 U	1 U	2 U	1 U	1 U	1 U
GM-12	11-13-91	35 B	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U
	03-12-92	29	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-12	11-12-91	64 B	2	2 U	1 U	1 U	1 U	1 U	1 U	6
	03-10-92	70	2	6 U	1 U	1 U	1 U	1 U	1 U	1 U
TVV-14	03-12-92	10	1	2 U	1 U	1 U -	1 U	1 U	1 U	1 U
RINSATE	11-12-91 11-13-91 03-09-92 03-10-92 03-11-92 03-12-92	1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U	4 U 2 U 2 U 12 U 2 U 9 U	22 16 17 16 30 28	1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 2 U 2 U 2 U	1	1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U
TRIP BLANK	11-12-91 11-13-91 03-09-92 03-11-92	1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U	4 U 2 U 13 20	1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U	2 1 U 1 U 3 U	1 U 1 U 1 U	1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U

U Not detected above given detection limit.

J Estimated value.

Compound found in associated blank as well as in the sample. В

TCE Trichloroethene. TCA 1,1,1-Trichloroethane. ug/L Micrograms per liter.

Duplicate sample from GM-5. November 1991 and March 1992 duplicates are labeled GM-13 and TW-27, respectively, in the field and lab records

TABLE 4b. DISSOLVED METALS
ANALYTICAL RESULTS FOR GROUND-WATER SAMPLES
SIEMENS NUCLEAR POWER CORPORATION FACILITY, RICHLAND, WASHINGTON PROJECT NO. WA183.03

Well Number	Date Sampled	Barium (ug/L)		Calcium (ug/L)	Iron (ug/L)		Magnesium (ug/L)	Mangar (ug/L)		Potassium (ug/L)	m	Sodium (ug/L)	
GM-1	11-12-91 03-09-92	30.3 36.6	B B	37,500 39,900	25.0 35.7	B NJ	9,290 9,550	5.7 5.2	8 8	4,400 5,040	В	15,700	
				,							_		
GM-2	11-12-91 03-10-92	36.9 38.5	B B	38,300 47,900	25.0 40.9	ή Πη	9,320 11,500	5.0 5.0	U U	4,350 5,110	8	19,100 17,600	
GM-3	11-12-91	. 70.6	В	59,800	25.0	UJ	12,600	11.4	В	9,630		22,400)
	03-12-92	64.5	В	57,000	25.6	U	11,500	7.7	В	8,710		23,600)
GM-4	11-12-91 03-12-92	55.8 49.3	8 B	53,300 63,100	25.0 25.0	ก กา	14,100 16,100	7.4 5.0	В В	4,880 5,370	В	18,300 17,700	
	00 12 32	,5.5	_	00,100	20.0		,	5.0	J	5,570		17,700	•
GM-5	11-13-91	72.9	В	34,700	25.0	UJ	14,100	29.6		7,930		23,800	
	11-13-91*	70.8	В	35,900	25.0	υJ	14,400	- 29.6		8,610		23,500	
	03-12-92 03-12-92*	88.5 89.0	B B	55,000 55,000	25.0 25.0	U U	22,400 22,700	44.7 43.6		8,360 8,530		29,700 31,000	
GM-6	11-13-91	44.7	В	47,500	29.9	UJ	11,300	13.4	В	5,980		19,600	3
	03-10-92	46.3	В	59,100	25.0	U	14,000	5.1	В	6,460		21,200)
3M-7	11-13-91	37.2	В	44,000	46.3	UJ	10,600	5.0	U	5.090		18,300	כ
	03-11-92	41.8	В	54,300	25.0	U	12,900	5.0	U	6,090		20,60)
GM-8	11-13-91	58.4	8	37,900	25.0	UJ	11,200	36.3		6,440		20,10	0
	03-11-92	82.8	В	61,000	53.5	8	15,300	10.4	В	7,350		23,50)
GM-9	11-13-91	99.5	В	59,000	56.4	UJ	15,400	13.6	В	12,900		47,40	0
	03-11-92	102	В	64,200	25.0	U	16,600	8.0	8	14,000		50,30)
3M-10	11-13-91	67.0	В	38,800	27.1	IJ	10,600	71.2		7,600		20,60	
	03-11-92	78.7	8	51,800	25.0	U	14,000	66.2		9,040		23,70)
GM-11	11-13-91	37.2	В	55,500	25.0	UJ	12,600	5.0	U	6,150		21,40	כ
	03-11-92	39.6	₿	61,100	126		14,100	5.0	8	6,430		22,40)
3M-12	11-13-91	80.1	В	61,200	28.4	IJ	13,000	22.0		10,600		20,800	0
	03-12-92	83.4	₿	69,900	25.9	U	14,700	11,3	В	10,800		21,600)
MW-12	11-12-91	108	8	112,000	37.7	BJ	23,200	6.4	В	9,070		30,600	
	03-10-92	105	В	110,000	57.2	U	23,400	8.7	В	9,300		32,400)
W-14	03-12-92	82.3	В	50,700	25.0	U	12,600	10.1	В	14,300		54,400)
RINSATE	11-12-91	15.0	U	40.0 U	25.0	υJ	40.0 U	5.0	U	400	U	406	
	11-13-91	15.0	U	40.0 U	25.0	UJ	40.0 U	5.0	U	400	U	119	
	03-09-92	20.0	U	67.4 B	25.0	U	44.7 B	5.0	U	500	U	124	
	03-10-92	20.0	U	157 B	33.4	В	55.6 B	5.0	U	400	U	231	
	03-11-92	20.0	U	61.0 B	25.0	U	40.0 U	5.0	U	408	U	199	
	03-12-92	20.0	U	82.5 U	25.0	U	50.2 U	5.0	U	685	U	124	

U Not detected above given detection limit.

J Estimated value.

B Result above the Instrument Detection Limit, but is below the Contract Required Detection Limit.

ug/L Micrograms per liter.

Duplicate sample from GM-5. November 1991 and March 1992 duplicates are labeled GM-13 and TW-27, respectively, in the field and lab records.

TABLE 4c. ANIONS AND AMMONIA
ANALYTICAL RESULTS FOR GROUND-WATER SAMPLES
SIEMENS NUCLEAR POWER CORPORATION FACILITY, RICHLAND, WASHINGTON
PROJECT NO. WA183.03

Well Number	Date Sampled	Chloride (mg/L)	Fluoride (mg/L)	Nitrate as N (mg/L)	Ortho- Phosphate (mg/L)	Sulfate (mg/L)	Ammonia as N (mg/L)
GM-1	11-12-91	10.1	0.300	4.26	0.100 U	28.0	0.041
	03-09-92	10.8	0.253	4.45	0.100 U	32.8	0.050 U
GM-2	11-12-91	8.26	0.335	3.87	0.100 U	21.1	0.035
	03-10-92	11.6	0.250	6.52	0.100 U	33.4	0.050 U
GM-3	11-12-91	38.0	1.31	11.4	0.235	17.9	0.042
	03-12-92	18.2	1.04	8.71	0.201	23.7	0.050 U
GM-4	11-12-91	10.5	0.910	19.0	0.100 U	11.5	0.037 J
	03-12-92	17.6	0.526	22.1	0.100 U	22.7	0.050 U
GM-5	11-13-91	8.92	7.10	26.0	0.100 U	60.7	45.0
	11-13-91*	8.64	7.20	9.96	0.100 U	58.6	46.9
	03-12-92	10.6	5.15	37.1	0.100 U	78.1	38.9
	03-12-92*	10.4	6.25	36.0	0.100 U	68.6	41.2
GM-6	11-13-91	11.4	0,333	6.43	0.100 U	30.5	0.030
	03-10-92	13.4	0.231	6.46	0.100 U	43.5	0.050 U
GM-7	11-13-91	12.8	0.254	5.46	0.100 U	29.9	0.030
	03-11-92	14.5	0.231	8.66	0.100 UJ	36.8	0.050 U
GM-8	11-13-91	10.4	2.10	15.5	0.108	33.4	5.23
	03-11-92	10.7	1.75	19.9	0.100 UJ	49.4	9.56
GM-9	11-13-91	18.5	7.05	45.7	0.100 U	52.7	10.08
	03-11-92	14.3	6.70	5.07	0.100 UJ	60.1	10.6
GM-10	11-13-91	9.98	3.62	21.4	0.121	40.2	12.39
	03-11-92	9.50	3.08	24.4	0.187 J	55.0	15.4
GM-11	11-13-91	12.5	0.571	9.5 6	0.100 U	36.2	0.044
	03-11-92	12.8	0.522	10 2	0.100 JJ	82.5	0.050 U
GM-12	11-13-91	10.5	2.74	8.22	0.100 U	37.2	5.44
	03-12-92	11.6	0.198	24.1	0.100 U	42.8	6.04
MW-12	11-12-91	17.8	0.359	54.1	0.100 U	66.2	0.028
	03-10-92	15.6	0.348	46.2	0.100 U	68.0	0.050 U
TW-14	03-12-92	13.0	10.2	45.9	0.100 1J	65.8	30.4
RINSATE	11-12-91	0.179	0.100 U	0.155	0.100 U	0.100 U	0.015
	11-13-91	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.030
	03-09-92	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.050 U
	03-10-92	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.050 U
	03-11-92	0.100 U	0.100 U	0.100 U	0.100 UJ	0.100 U	0.050 U
	03-12-92	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.050 U

U Not detected above given detection limit.

J Estimated value.

N Nitrogen.

mg/L Milligrams per liter.

Duplicate sample from GM-5. November 1991 and March 1992 duplicates are labeled GM-13 and TW-27, respectively, in the field and lab records.

TABLE 4d. ADDITIONAL INORGANIC ANALYTES AND RADIONUCLIDES
ANALYTICAL RESULTS FOR GROUND-WATER SAMPLES
SIEMENS NUCLEAR POWER CORPORATION FACILITY, RICHLAND, WASHINGTON PROJECT NO. WA183.03

Well Number	Date Sampled	Alkalinity (mg/L)	Acidity (mg/L)	TDS (mg/L)	Gross Alpha (pCi/L)	Gross Beta (pCl/L)
GM-1	11-12-91	111	10.0 U	NA NA	10 +/- 6	15 +/- 6
	03-09-92	109	10.0 U	231	2.9 +/- 3.1	12 +/- 3
GM-2	11-12-91	135	10.0 U	NA:	19 +/- 8	22 +/- 4
	03-10-92	132	10.0 U	256	1.6 +/- 2.2	5.5 +/- 2.0
GM-3	11-12-91	155	10.0 U	NA	35 +/- 14	47 +/- 7
	03-12-92	166	10.0 U	342	7.4 +/- 3.5	13 +/- 3
GM-4	11-12-91	121	10.0 U	NA	80 +/- 21	66 +/- 9
	03-12-92	120	10.0 U	356	9.7 +/- 3.6	12 +/- 2
GM-5	11-13-91	169	10.0 U	NA	75 +/- 7	82 +/- 4
	11-13-91*	168	10.0 U	NA	78 +/- 8	74 +/- 4
	03-12-92	176	10.0 U	465	78 +/- 9	87 +/- 4
	03-12-92*	177	10.0 U	452	64 +/- 9	83 +/- 5
GM-6	11-13-91	155	10.0 U	NA	59 +/- 16	58 +/- 10
	03-10-92	169	10.0 U	315	4.8 +/- 3.6	14 +/- 3
GM-7	11-13-91	151	10.0 U	NA	46 +/- 14	38 +/- 9
	03-11-92	151	10.0 U	293	1.9 +/- 3.7	15 +/- 4
GM-8	11-13-91	105	10.0 U	NA	60 +/- 15	65 +/- 8
	03-11-92	156	10.0 U	355	11 +/- 5	49 +/- 5
GM-9	11-13-91	116	10.0 U	NA	54 +/- 12	62 +/- 6
•	03-11-92	127	· 10.0 U	518	23 +/- 7	60 +/- 6
GM-10	11-13-91	104	10.0 U	NA	39 +/- 9	66 +/- 5
	03-11-92	117	10.0 U	363	9.2 +/- 3.7	60 +/- 4
GM-11	11-13-91	154	10.0 U	NA	5.3 +/- 2.8	10 +/- 2
	03-11-92	165	10.0 U	330	2.6 +/- 3.2	16 +/- 4
GM-12	11-13-91	150	10.0 U	NA	87 +/- 20	90 +/- 11
	03-12-92	162	10.0 U	385	21 +/- 6	38 +/- 5
MW-12	11-12-91	169	10.0 U	NA	9.8 +/- 5.4	59 +/- 5
	03-10-92	167	10.0 U	566	6.8 +/- 5.6	80 +/- 7
TW-14	03-12-92	133	10.0 U	489	40 +/- 8	66 +/- 4
RINSATE	11-12-91	1.00 U	10.0 U	NA	0.6 +/- 1.0	1.8 +/- 1.6
	11-13-91	1.00 U	10.0 U	NA	0.0 +/- 1.0	1.6 +/- 1.6
	03-09-92	1.00 U	10.0 U	10.0 U	0.6 +/- 1.1	1.2 +/- 1.6
	03-10-92	1.00 U	10.0 U	10.0 U	0.3 +/- 1.0	2.6 +/- 1.6
	03-11-92	1.00 U	10.0 U	10.0 U	0.0 +/- 1.0	1.9 +/- 1.6
	03-12-92	1.00 U	10.0 U	19.0	0.0 +/- 1.0	2.9 +/- 1.6

U Not detected above given detection limit.

NA Not analyzed.

. .

TDS Total Dissolved Solids.
mg/L Milligrams per liter.

J Estimated value.

Duplicate sample from GM-5. November 1991 and March 1992 duplicates are labeled GM-13 and TW-27, respectively, in the field and lab records.

TABLE 4e. FIELD PARAMETERS
ANALYTICAL RESULTS FOR GROUND-WATER SAMPLES
SIEMENS NUCLEAR POWER CORPORATION FACILITY, RICHLAND, WASHINGTON PROJECT NO. WA183.03

Well Number	Date Sampled	Temperature (degrees C)	pH (standard units)	Specific Conductance (umhos/cm)
GM-1	11-12-91	17.5	7.7	385
GIVI-1	03-09-92	16.7	7.8	350 J
GM-2	11-12-91	18.5	7.7	363
	03-10-92	15.9	7.6	390 J
GM-3	11-12-91	20.2	7.6	483
	03-12-92	18.3	7.7	570 J
GM-4	11-12-91	19.3	7.4	557
	03-12-92	17.6	8.2	670 J
GM-5	11-13-91	17.0	7.4	749
	11-13-91*	NA	NA	NA
	03-12-92	17.0	7.5	770 J
	03-12-92*	NA	NA	NA
GM-6	11-13-91	13.7	7.6	463
	03-10-92	18.6	7.7	520 J
GM-7	11-13-91	13.2	7.8	418
	03-11-92	16.6	7.7	480 J
· GM-8	11-13-91	13.6	7.3	552
	03-11-92	16.6	7.2	620 J
GM-9	11-13-91	14.2	7.4	832
	03-11-92	17.4	7.5	800 J
GM-10	11-13-91	15.1	6.9	537
	03-11-92	17.9	6.8	580 J
GM-11	11-13-91	15.2	7.3	503
	03-11-92	17.0	7.4	520 J
GM-12	11-13-91	15.5	7.4	607
	03-12-92	17.0	7.6	600 J
MW-12	11-12-91	15.1	7.3	936
	03-10-92	14.8	7.2	960 J
TW-14	03-12-92	18.7	8.4	820 J

J Estimated value because field instrument was calibrated to only one known standard.

NA Not applicable.

umhos/cm Micromhos per centimeter.

C Centigrade.

Duplicate sample from GM-5. November 1991 and March 1992 duplicates are labeled GM-13 and TW-27, respectively, in the field and lab records.

TABLE 5. SUMMARY OF DATA VALIDATION RESULTS FOR MARCH 1992 CHEMICAL ANALYSES SIEMENS NUCLEAR POWER CORPORATION FACILITY, RICHLAND, WASHINGTON PROJECT NO. WA183.03

Analyte		Sampling Event	Qualifier Code	Samples Flagged
Volatile C	Organic Compounds			
	TCE	Nov-91	B (1)	GM-3, GM-5, GM-6, GM-7, GM-8, GM-9, GM-10, GM-11, GM-12, GM-13*, MW-12
		Nov-91	U (7)	GM-4
	Acetone	Nov-91	U (6)	GM-5, RINSATE 11/12/91, TRIP BLANK 11/12/91
		Mar-92	U (5)	GM-1, GM-2, GM-7, GM-8, MW-12, RINSATE 3/10/92, RINSATE 3/12/92
		Mar-92	บ (8)	GM-2, MW-12
	Methylene chloride	Mar-92	U (5)	GM-1, GM-2, GM-3, GM-5, GM-6, GM-7, GM-8, GM-9, GM-11, MW-12, TW-27*, RINSATE 3/9/92, RINSATE 3/10/92, RINSATE 3/11/92, RINSATE 3/12/92
		Mar-92	U (6)	GM-3, GM-5, GM-9, GM-11, TW-27*, RINSATE 3/12/92
		Mar-92	U (8)	GM-1, GM-2, GM-3, GM-5, GM-6, GM-7, GM-8, GM-9, GM-11, MW-12, TW-27*
	Chloroform	Nov-91 Mar-92	U (9)	GM-4 GM-4
Wet Che	mistry			
	Ammonia	Nov-91	J (2)	GM-4
	Ortho-phosphate	Mar-92	UJ (3)	GM-7, GM-8, GM-9, GM-11, RINSATE 3/11/92
		Mar-92	J (3)	GM-10
Metals				
	Barium	Nov-91	B (4)	GM-1, GM-2, GM-3, GM-4, GM-5, GM-6, GM-7, GM-8, GM-9, GM-10, GM-11, GM-12, GM-13*, MW-12
		Mar-92	B (4)	GM-1, GM-2, GM-3, GM-4, GM-5, GM-6, GM-7, GM-8, GM-9, GM-10, GM-11, GM-12, TW-14, TW-27*, MW-12
	Calcium	Mar-92	B (4)	RINSATE 3/9/92, RINSATE 3/10/92, RINSATE 3/11/92
		Mar-92	U (10)	RINSATE 3/12/92
	tron	Nov-91 Nov-91 Nov-91	B (4) U (10) J (3)	MW-12 GM-6, GM-7, GM-9, GM-10, GM-12 GM-1, GM-2, GM-3, GM-4, GM-5, GM-6, GM-7, GM-8, GM-9, GM-10, GM-11, GM-12, GM-13*, MW-12, RINSATE 11/12/91, RINSATE 11/13/91
		Mar-92	B (4)	GM-1, GM-8, RINSATE 3/10/92
		Mar-92 Mar-92	U (10) U (9)	GM-3, GM-12 GM-2, MW-12

Notes on next page.

TABLE 5. SUMMARY OF DATA VALIDATION RESULTS FOR MARCH 1992 CHEMICAL ANALYSES SIEMENS NUCLEAR POWER CORPORATION FACILITY, RICHLAND, WASHINGTON PROJECT NO. WA183.03

		Sampling Event	Qualifier Code	Samples Flagged			
Metals (c	ontinued)						
	Magnesium	Mar-92 Mar-92	B (4) U (10)	RINSATE 3/9/92, RINSATE 3/10/92 RINSATE 3/12/92			
	Manganese	Nov-91 Mar-92	B (4) B (4)	GM-1, GM-3, GM-4, GM-6, GM-9, MW-12 GM-1, GM-3, GM-4, GM-6, GM-8, GM-9, GM-11, GM-12, MW-12, TW-14			
	Potassium	Nov-91 Mar-92	B (4) U (10)	GM-1, GM-2, GM-4 RINSATE 3/9/92, RINSATE 3/11/92, RINSATE 3/12/92			
	Sodium	Nov-91 Mar-92 Mar-92	B (4) B (4) U (10)	RINSATE 11/12/91, RINSATE 11/13/91 RINSATE 3/10/92 RINSATE 3/9/92, RINSATE 3/11/92, RINSATE 3/12/92			
Field Par	ameters						
	Conductivity	Mar-92	J (11)	GM-1, GM-2, GM-3, GM-4, GM-5, GM-6, GM-7, GM-8, GM-9, GM-10, GM-11, GM-12, TW-14, TW-27*, MW-12			
*	Duplicate of GM-5						
TCE	Trichloroethene		•				
	The material was analyzed for, but not detected above the level of the associated value.						
U		- 1					
	The associated value	e is either the samp	ie quantitati	on limit or the sample detection limit.			
	The associated value The material was an	e is either the samp alyzed for, but not c	ie quantitation letected. Fo	on limit or the sample detection limit. or inorganic analytes, the			
	The associated value The material was and associated value is a	e is either the samp alyzed for, but not c an estimate and ma	ie quantitation letected. For be inaccur	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise.			
UJ	The associated value The material was and associated value is a For organic analytes	e is either the samp alyzed for, but not c an estimate and may , the sample quanti	ie quantitation letected. For the inaccur lation limit is	on limit or the sample detection limit. or inorganic analytes, the			
	The associated value The material was and associated value is a	e is either the samp alyzed for, but not c an estimate and ma , the sample quanti e is an estimated qu	ie quantitation letected. For the bear bear to tation limit is antity.	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. an estimated quantity.			
B J MJ	The associated value The material was and associated value is a For organic analytes The associated value Analyte detected in I	e is either the samp alyzed for, but not c an estimate and man , the sample quanti e is an estimated qu aboratory blank, ex	e quantilation de quantilation for inaccur lation limit is santity.	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. ean estimated quantity. oplanation (4)			
n n	The associated value The material was and associated value is a For organic analytes The associated value Analyte detected in the Compound found in	e is either the samp alyzed for, but not c an estimate and may the sample quanti e is an estimated qu aboratory blank, ex associated blank a	ie quantitation letected. For the inaccur tation limit is tantity. the company the inaccur the inacur the inaccur the inaccur the inaccur	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. or an estimated quantity. planation (4)			
UJ J B (1) (2)	The associated value The material was and associated value is a For organic analytes The associated value Analyte detected in the Compound found in Matrix spike recovery	e is either the samp alyzed for, but not c an estimate and may i, the sample quanti e is an estimated qu aboratory blank, ex associated blank a y outside quality co	ie quantitation de quantitation limit is tation limit is tantity. I cept with experted as in a control limits.	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. or an estimated quantity. planation (4)			
UJ J B (1) (2) (3)	The associated value The material was and associated value is a For organic analytes The associated value Analyte detected in I Compound found in Matrix spike recover Laboratory duplicate	e is either the samp alyzed for, but not can estimate and may , the sample quanti e is an estimated quaboratory blank, ex associated blank ay outside quality co	ie quantitatic letested. For y be inaccur tation limit is lantity. cept with ex s well as in a ntrol limits. ference out	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. an estimated quantity. oplanation (4) sample.			
UJ J B (1) (2) (3) (4)	The associated value The material was and associated value is a For organic analytes The associated value Analyte detected in I Compound found in Matrix spike recover Laboratory duplicate Result above the Institution.	e is either the samp alyzed for, but not can estimate and may the sample quanti e is an estimated quaboratory blank, ex associated blank a y outside quality control distrument Detection L	ie quantitatic letested. For y be inaccur tation limit is lantity. cept with ex s well as in a ntrol limits. ference out imit (IDL), b	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. an estimated quantity. splanation (4) sample. side quality control limits. ut below the Contract Required Detection			
UJ J B (1) (2) (3) (4)	The associated value The material was and associated value is a For organic analytes The associated value Analyte detected in the Compound found in Matrix spike recover Laboratory duplicate Result above the Ins Limit. Compound detected	e is either the samp alyzed for, but not can estimate and may the sample quanti e is an estimated quaboratory blank, ex associated blank a y outside quality control distrument Detection L	ie quantitatic letested. For y be inaccur tation limit is lantity. cept with ex s well as in a ntrol limits. ference out imit (IDL), b	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. c an estimated quantity. orplanation (4) sample. side quality control limits.			
UJ J B (1) (2) (3) (4)	The associated value The material was and associated value is a For organic analytes The associated value Analyte detected in I Compound found in Matrix spike recover Laboratory duplicate Result above the Ins Limit. Compound detected the blank result.	e is either the samp alyzed for, but not can estimate and may the sample quantite is an estimated quaboratory blank, exassociated blank ay outside quality coerelative percent distrument Detection to the property of the pro	ie quantitatic letested. For y be inaccur lation limit is lantity. cept with ex s well as in a ntrol limits. ference out limit (IDL), b	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. an estimated quantity. splanation (4) sample. side quality control limits. ut below the Contract Required Detection			
UJ J B (1) (2) (3) (4) (5)	The associated value The material was and associated value is a For organic analytes The associated value Analyte detected in I Compound found in Matrix spike recover Laboratory duplicate Result above the ins Limit. Compound detected the blank result. Compound detected times the blank result	e is either the samp alyzed for, but not can estimate and may the sample quantities is an estimated quaboratory blank, exassociated blank ay outside quality coerelative percent distrument Detection to the in trip blank and so in method blank at the sample of the sampl	ie quantitatice quantitatice for be inaccur lation limit is lantity. It is seen that it is see	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. an estimated quantity. planation (4) sample. side quality control limits. ut below the Contract Required Detection is greater than IDL and less than 10 times esult is greater than IDL and less than 10			
UJ J B (1) (2) (3) (4)	The associated value The material was and associated value is a For organic analytes. The associated value Analyte detected in I Compound found in Matrix spike recover Laboratory duplicate Result above the Institution. Compound detected the blank result. Compound detected times the blank result Compound detected times the blank result.	e is either the samp alyzed for, but not can estimate and may the sample quantities is an estimated quaboratory blank, exassociated blank ay outside quality contrained percent distrument Detection to the trip blank and so in method blank at	ie quantitatice quantitatice for be inaccur lation limit is lantity. It is seen that it is see	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. an estimated quantity. planation (4) sample. side quality control limits. ut below the Contract Required Detection is greater than IDL and less than 10 times			
UJ J B (1) (2) (3) (4) (5)	The associated value The material was and associated value is a For organic analytes. The associated value Analyte detected in I Compound found in Matrix spike recover Laboratory duplicate Result above the Institut. Compound detected the blank result. Compound detected times the blank result Compound detected times and the same as a second times the blank result Compound detected times the blank result Compound detected times the same as a second time time time times the blank result Compound detected times tim	e is either the samp alyzed for, but not can estimate and may, the sample quantie is an estimated quaboratory blank, exassociated blank ay outside quality control percent distrument Detection to the intrip blank and so in method blank at it.	ie quantitative detected. For the inaccur lation limit is sentity. I could be sentity in a sentity	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. an estimated quantity. planation (4) sample. side quality control limits. ut below the Contract Required Detection is greater than IDL and less than 10 times esult is greater than IDL and less than 10			
UJ J B (1) (2) (3) (4) (5) (6) (7) (8)	The associated value The material was and associated value is a For organic analytes The associated value Analyte detected in I Compound found in Matrix spike recover Laboratory duplicate Result above the ins Limit. Compound detected the blank result. Compound detected times the blank result Compound detected less than 10 times the	e is either the samp alyzed for, but not can estimate and may the sample quantie is an estimated quaboratory blank, exassociated blank ay outside quality coerelative percent distrument Detection to the trip blank and so in method blank at the in method blank at the blank result.	ie quantitatice quantitatice for be inaccur tation limit is tantity. In the complete form of the control limits. In the control limits. In the control limits ference out the control limit (IDL), but ample result and sample record sample record sample record sample record (rinsate) at	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. an estimated quantity. planation (4) sample. side quality control limits. ut below the Contract Required Detection is greater than IDL and less than 10 times esult is greater than IDL and less than 10 esult is greater than IDL and less than 5 and sample result is greater than the IDL and			
B (1) (2) (3) (4) (5) (6) (7)	The associated value The material was and associated value is a For organic analytes The associated value Analyte detected in I Compound found in Matrix spike recover Laboratory duplicate Result above the ins Limit. Compound detected the blank result. Compound detected times the blank result Compound detected times the blank result Compound detected times the blank result Compound detected less than 10 times the Compound detected	e is either the samp alyzed for, but not can estimate and may the sample quantities is an estimated quaboratory blank, expended the sassociated blank and sometiment Detection to the properties of the sample detection to the sample blank and some the sample blank and some the sample blank and some the sample blank result.	ie quantitatice quantitatice for be inaccur tation limit is tantity. In the complete form of the control limits. In the control limits. In the control limits ference out the control limit (IDL), but ample result and sample record sample record sample record sample record (rinsate) at	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. an estimated quantity. planation (4) sample. side quality control limits. ut below the Contract Required Detection is greater than IDL and less than 10 times esult is greater than IDL and less than 10 esult is greater than IDL and less than 5			
UJ J B (1) (2) (3) (4) (5) (6) (7) (8) (9)	The associated value The material was and associated value is a For organic analytes. The associated value Analyte detected in I Compound found in Matrix spike recover Laboratory duplicate Result above the Institut. Compound detected times the blank result. Compound detected times the blank result Compound detected times the blank result Compound detected times the blank result Compound detected less than 10 times the Compound detected less than 5 times the	e is either the samp alyzed for, but not can estimate and may the sample quantie is an estimated quaboratory blank, exassociated blank ay outside quality coerelative percent distrument Detection to the trip blank and state. It in method blank a lit. If in equipment blank e blank result.	ie quantitatice quantitatice for be inaccur lation limit is lantity. It is lantity. It is seen that is well as in some for a lation limits. If the forence out limit (IDL), but ample result and sample record sample record sample record (rinsate) and k (rinsate) and k (rinsate) and sample record s	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. In estimated quantity. Iplanation (4) Isample. Is greater than IDL and less than 10 times are greater than IDL and less than 10 esult is greater than IDL and less than 5 and sample result is greater than IDL and less than 5 and sample result is greater than IDL and less than 10 and sample result is greater than IDL and less than 5 and sample result is greater than the IDL and sample result is greater			
UJ J B (1) (2) (3) (4) (5) (6) (7) (8)	The associated value The material was and associated value is a For organic analytes. The associated value Analyte detected in I Compound found in Matrix spike recover Laboratory duplicate Result above the Institut. Compound detected times the blank result. Compound detected times the blank result Compound detected times the blank result Compound detected times the blank result Compound detected less than 10 times the Compound detected less than 5 times the	e is either the samp alyzed for, but not can estimate and may the sample quantities is an estimated quaboratory blank, exassociated blank ay outside quality control percent distrument Detection to the trip blank and state. If in method blank a lit. If in equipment blank e blank result. If in equipment blank is blank result.	ie quantitatice quantitatice for be inaccur lation limit is lantity. It is lantity. It is seen that is well as in some for a lation limits. If the forence out limit (IDL), but ample result and sample record sample record sample record (rinsate) and k (rinsate) and k (rinsate) and sample record s	on limit or the sample detection limit. or inorganic analytes, the ate or imprecise. an estimated quantity. or planation (4) sample. side quality control limits, ut below the Contract Required Detection is greater than IDL and less than 10 times esult is greater than IDL and less than 10 esult is greater than IDL and less than 5 and sample result is greater than the IDL and			

FIGURES

